
A CP-symmetry transformation swaps a particle with the mirror image of its antiparticle. The LHCb collaboration has observed a breakdown of this symmetry in the decays of the D0 meson (illustrated by the big sphere on the right) and its antimatter counterpart, the anti-D0 (big sphere on the left), into other particles (smaller spheres). The extent of the breakdown was deduced from the difference in the number of decays in each case (vertical bars, for illustration only) (Image: CERN)
Si scosta un altro po’ il velo calato sul mistero dell’asimmetria tra materia e antimateria: un’asimmetria minuscola ma sufficiente a far sì che il nostro universo esista e sia fatto esclusivamente di materia. È stata, infatti, scoperta nei decadimenti delle particelle charm (ossia particelle che contengono un quark c, che ha carica elettrica +2/3 rispetto a quella dell’elettrone) un’asimmetria di comportamento rispetto alle loro antiparticelle, chiamata violazione di CP (cioè di carica e di parità). La collaborazione LHCb al CERN ha rivelato la violazione di CP (carica e parita') nel decadimento dei mesoni D0 . La misura ha una significatività statistica di 5.3 deviazioni standard e viene presentata alla conferenza Rencontres de Moriond EW e in un seminario al CERN e dai ricercatori italiani Federico Betti e Angelo Carbone, entrambi della Sezione INFN e dell’Università di Bologna, che ha coordinato l'esperimento. La Sezione INFN di Milano partecipa a LHCb con un gruppo coordinato da Nicola Neri, che e' responsabile del progetto e della costruzione del tracciatore a silicio "Upstream tracker" per l'upgrade dell'esperimento attualmente in corso.
I quark possono essere suddivisi in due categorie: quelli di “tipo up” con carica +2/3 denominati quark up (u), charm (c) e top (t), e quelli di “tipo down” con carica -1/3, i quark down (d), strange (s) e beauty (b). Differenze di proprietà tra materia e antimateria derivanti dal cosiddetto fenomeno della violazione della simmetria CP erano state osservate in passato solo nei decadimenti di particelle strange e beauty, cioè particelle che contengono quark s o quark b. La violazione di CP non era mai stata misurata prima d’ora nei decadimenti di particelle che contengono quark con carica di +2/3.
“Questa scoperta - spiega Giovanni Passaleva dell’INFN di Firenze, che è a capo della collaborazione internazionale LHCb - apre ora un nuovo campo di studi per la fisica delle particelle: la comprensione degli effetti della violazione di CP anche nella categoria di quark di tipo up”. “La violazione di CP è uno dei processi chiave per comprendere fino in fondo e spiegare perché l’universo di oggi sia composto solo di particelle di materia, e non vi sia presenza di antimateria residua”.
Il Modello Standard spiega tutti gli effetti di violazione di CP finora noti nella fisica delle particelle ed è stata ulteriormente confermata da altre misure, molte ottenute dall’esperimento LHCb”, spiega Matteo Palutan, ricercatore dei Laboratori Nazionali INFN di Frascati e rappresentante nazionale della collaborazione LHCb. “La stessa teoria prevede anche la minuscola violazione di CP nei decadimenti delle particelle charm che finalmente siamo riusciti a provare sperimentalmente con questa misura”, conclude Palutan.
L’entità della violazione di CP osservata finora nelle interazioni del Modello Standard è, tuttavia, troppo piccola per spiegare l’asimmetria materia-antimateria che osserviamo in natura, suggerendo l’esistenza di ulteriori processi ancora sconosciuti che violino più fortemente la simmetria CP. Questa misura stimolerà un rinnovato lavoro teorico per valutarne l’impatto sulla descrizione fornita dalla matrice CKM nel contesto del Modello Standard, e aprirà la strada alla ricerca di possibili nuovi processi di violazione di CP nelle particelle charm. La ricerca prosegue dunque nel suo intento di scovare effetti che evidenzino l’incompletezza del Modello Standard nella descrizione della realtà fisica, per aprire nuovi orizzonti alla conoscenza dei meccanismi di funzionamento del nostro universo.